Model-agnostic pricing of exotic derivatives using signatures
<p>Neural networks hold out the promise of fast and reliable derivative pricing. Such an approach usually involves the supervised learning task of mapping contract and model parameters to derivative prices.</p> <p>In this work, we introduce a model-agnostic path-wise approach to de...
Hauptverfasser: | Alden, A, Ventre, C, Horvath, B, Lee, G |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
Association of Computing Machinery
2022
|
Ähnliche Einträge
Ähnliche Einträge
-
Numerical method for model-free pricing of exotic derivatives in discrete time using rough path signatures
von: Lyons, T, et al.
Veröffentlicht: (2020) -
The agnostic's response to climate deniers: price carbon!
von: van Der Ploeg, F, et al.
Veröffentlicht: (2018) -
The agnostic's response to climate deniers: price carbon!
von: Van der Ploeg, R, et al.
Veröffentlicht: (2017) -
Non-parametric pricing and hedging of exotic derivatives
von: Lyons, T, et al.
Veröffentlicht: (2021) -
Normal tissue transcriptional signatures for tumor-type-agnostic phenotype prediction
von: Corey Weistuch, et al.
Veröffentlicht: (2024-11-01)