Summary: | <p>Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionising imaging modality with unrivalled soft tissue contrast. A key consideration for MRI is data acquisition time, which is limited by inherent technological and physiological constraints. Compressed sensing is a relatively recent framework that can reduce the MRI acquisition time by undersampling randomly and exploiting presumed redundancies in the data.</p>
<p>The Approximate Message Passing (AMP) algorithm is an iterative compressed sensing method that efficiently reconstructs signals that have been sampled with i.i.d. sub-Gaussian sensing matrices. However, when Fourier coefficients of a signal with non-uniform spectral density are sampled, such as in MRI, AMP performs poorly in practice.</p>
<p>In response, this thesis proposes the Variable Density Approximate Message Passing (VDAMP) algorithm for undersampled MRI data. We present three versions of VDAMP: single-coil VDAMP, where receiver coil sensitivities are ignored, Parallel-VDAMP (P-VDAMP), which includes coil sensitivities, and Denoising-P-VDAMP (D-P-VDAMP), which incorporates the statistical modelling capabilities of neural networks. Central to VDAMP is a property that we term "coloured state evolution", where the difference between the intermediate image estimate at a given iteration and the ground truth is distributed according to a zero-mean Gaussian with known covariance. We demonstrate that coloured state evolution can be leveraged to yield an algorithm that converges rapidly, and to a competitive reconstruction quality, without the need to hand-tune model parameters.</p>
|