Robust inference on parameters via particle filters and sandwich covariance matrices
Likelihood based estimation of the parameters of state space models can be carried out via a particle filter. In this paper we show how to make valid inference on such parameters when the model is incorrect. In particular we develop a simulation strategy for computing sandwich covariance matrices...
Autores principales: | Shephard, N, Doucet, A |
---|---|
Formato: | Working paper |
Publicado: |
University of Oxford
2012
|
Ejemplares similares
Rao-blackwellised particle filtering via data augmentation
por: Andrieu, C, et al.
Publicado: (2002)
por: Andrieu, C, et al.
Publicado: (2002)
Rao−Blackwellised Particle Filtering via Data Augmentation
por: Andrieu, C, et al.
Publicado: (2001)
por: Andrieu, C, et al.
Publicado: (2001)
Ejemplares similares
-
Robust inference on parameters via particle filters and sandwich covariance matrices.
por: Shephard, N, et al.
Publicado: (2012) -
Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference
por: Edelman, Alan, et al.
Publicado: (2005) -
Inferring the eigenvalues of covariance matrices from limited, noisy data
por: Everson, R, et al.
Publicado: (2000) -
Filtering via Simulation: Auxiliary Particle Filters.
por: Pitt, M, et al.
Publicado: (1999) -
Filtering via simulation: auxiliary particle filters.
por: Pitt, M, et al.
Publicado: (1997)