Sharp error bounds for Ritz vectors and approximate singular vectors
We derive sharp bounds for the accuracy of approximate eigenvectors (Ritz vectors) obtained by the Rayleigh-Ritz process for symmetric eigenvalue problems. Using information that is available or easy to estimate, our bounds improve the classical Davis-Kahan theorem by a factor that can be arbitraril...
Päätekijä: | |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
American Mathematical Society
2020
|