Sharp error bounds for Ritz vectors and approximate singular vectors
We derive sharp bounds for the accuracy of approximate eigenvectors (Ritz vectors) obtained by the Rayleigh-Ritz process for symmetric eigenvalue problems. Using information that is available or easy to estimate, our bounds improve the classical Davis-Kahan theorem by a factor that can be arbitraril...
Hlavní autor: | Nakatsukasa, Y |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
American Mathematical Society
2020
|
Podobné jednotky
-
Accuracy of singular vectors obtained by projection-based SVD methods
Autor: Nakatsukasa, Y
Vydáno: (2017) -
Rayleigh-Ritz Majorization Error Bounds for the Linear Response Eigenvalue Problem
Autor: Teng Zhongming, a další
Vydáno: (2019-07-01) -
Sharp Focusing of a Hybrid Vector Beam with a Polarization Singularity
Autor: Victor V. Kotlyar, a další
Vydáno: (2021-06-01) -
Nonlinear Ritz approximation for Fredholm functionals
Autor: Mudhir A. Abdul Hussain
Vydáno: (2015-11-01) -
Best approximation in spaces of bounded vector-valued sequences
Autor: Ştefan Cobzaş
Vydáno: (1994-08-01)