Summary: | One of today’s challenges to realise computing based on quantum mechanics is to reliably and scalably encode information in quantum systems. Here, we present a photon source to on-demand deliver photonic quantum bits of information based on a strongly coupled atom-cavity system. The source operates intermittently for periods of up to 100 <i>μ</i>s, with a single-photon repetition rate of 1 MHz, and an intra-cavity production efficiency of up to 85%. Our ability to arbitrarily control the photons’ wavepackets and phase profiles, together with long coherence times of 500 ns, allows to store time-bin encoded quantum information within a single photon. To do so, the spatio-temporal envelope of a single photon is sub-divided in d time bins which allows for the delivery of arbitrary qu-d-its. This is done with a fidelity of > 95% for qubits, and 94% for qutrits verified using a newly developed time-resolved quantum-homodyne measurement technique.<br/><br/> Additionally, we combine two separate fields of quantum physics by using our deterministic single-photon source to seed linear optics quantum computing (LOQC) circuits. As a step towards quantum networking, it is shown that this photon source can be combined with quantum gates, namely a chip-integrated beam splitter, a controlled-NOT (CNOT) gate as well as a CNOT4 gate. We use this CNOT4 gate to entangle photons deterministically emitted from our source and observe non-classical correlations between events separated by periods exceeding the travel time across the chip by three orders of magnitude. Additionally, we use time-bin encoded qubits to systematically study the de- and re-phasing of quantum states as well as the the effects of time-varying internal phases in photonic quantum circuits.
|