A nonabelian Fourier transform for tempered unipotent representations
<p>We define an involution on the elliptic space of tempered unipotent representations of inner twists of a split simple <em>p</em>-adic group <em>G</em> and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups....
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Cambridge University Press
2024
|
_version_ | 1797113072188391424 |
---|---|
author | Aubert, A-M Ciubotaru, D Romano, B |
author_facet | Aubert, A-M Ciubotaru, D Romano, B |
author_sort | Aubert, A-M |
collection | OXFORD |
description | <p>We define an involution on the elliptic space of tempered unipotent representations of inner twists of a split simple <em>p</em>-adic group <em>G</em> and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups. In particular, we formulate a precise conjecture about the relation with a version of Lusztig’s nonabelian Fourier transform on the space of unipotent representations of the (possibly disconnected) reductive quotients of maximal compact subgroups. We give evidence for the conjecture, including proofs for SL<sub><em>n</em></sub> and PGL<sub><em>n</em></sub>.</p> |
first_indexed | 2024-04-09T03:58:31Z |
format | Journal article |
id | oxford-uuid:d66d2958-2fa4-4aaa-a9fd-01471fe34a20 |
institution | University of Oxford |
language | English |
last_indexed | 2024-04-09T03:58:31Z |
publishDate | 2024 |
publisher | Cambridge University Press |
record_format | dspace |
spelling | oxford-uuid:d66d2958-2fa4-4aaa-a9fd-01471fe34a202024-03-26T12:00:12ZA nonabelian Fourier transform for tempered unipotent representationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:d66d2958-2fa4-4aaa-a9fd-01471fe34a20EnglishSymplectic ElementsCambridge University Press2024Aubert, A-MCiubotaru, DRomano, B<p>We define an involution on the elliptic space of tempered unipotent representations of inner twists of a split simple <em>p</em>-adic group <em>G</em> and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups. In particular, we formulate a precise conjecture about the relation with a version of Lusztig’s nonabelian Fourier transform on the space of unipotent representations of the (possibly disconnected) reductive quotients of maximal compact subgroups. We give evidence for the conjecture, including proofs for SL<sub><em>n</em></sub> and PGL<sub><em>n</em></sub>.</p> |
spellingShingle | Aubert, A-M Ciubotaru, D Romano, B A nonabelian Fourier transform for tempered unipotent representations |
title | A nonabelian Fourier transform for tempered unipotent representations |
title_full | A nonabelian Fourier transform for tempered unipotent representations |
title_fullStr | A nonabelian Fourier transform for tempered unipotent representations |
title_full_unstemmed | A nonabelian Fourier transform for tempered unipotent representations |
title_short | A nonabelian Fourier transform for tempered unipotent representations |
title_sort | nonabelian fourier transform for tempered unipotent representations |
work_keys_str_mv | AT aubertam anonabelianfouriertransformfortemperedunipotentrepresentations AT ciubotarud anonabelianfouriertransformfortemperedunipotentrepresentations AT romanob anonabelianfouriertransformfortemperedunipotentrepresentations AT aubertam nonabelianfouriertransformfortemperedunipotentrepresentations AT ciubotarud nonabelianfouriertransformfortemperedunipotentrepresentations AT romanob nonabelianfouriertransformfortemperedunipotentrepresentations |