A nonabelian Fourier transform for tempered unipotent representations

<p>We define an involution on the elliptic space of tempered unipotent representations of inner twists of a split simple <em>p</em>-adic group <em>G</em> and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups....

Full description

Bibliographic Details
Main Authors: Aubert, A-M, Ciubotaru, D, Romano, B
Format: Journal article
Language:English
Published: Cambridge University Press 2024
_version_ 1797113072188391424
author Aubert, A-M
Ciubotaru, D
Romano, B
author_facet Aubert, A-M
Ciubotaru, D
Romano, B
author_sort Aubert, A-M
collection OXFORD
description <p>We define an involution on the elliptic space of tempered unipotent representations of inner twists of a split simple <em>p</em>-adic group <em>G</em> and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups. In particular, we formulate a precise conjecture about the relation with a version of Lusztig&rsquo;s nonabelian Fourier transform on the space of unipotent representations of the (possibly disconnected) reductive quotients of maximal compact subgroups. We give evidence for the conjecture, including proofs for SL<sub><em>n</em></sub> and PGL<sub><em>n</em></sub>.</p>
first_indexed 2024-04-09T03:58:31Z
format Journal article
id oxford-uuid:d66d2958-2fa4-4aaa-a9fd-01471fe34a20
institution University of Oxford
language English
last_indexed 2024-04-09T03:58:31Z
publishDate 2024
publisher Cambridge University Press
record_format dspace
spelling oxford-uuid:d66d2958-2fa4-4aaa-a9fd-01471fe34a202024-03-26T12:00:12ZA nonabelian Fourier transform for tempered unipotent representationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:d66d2958-2fa4-4aaa-a9fd-01471fe34a20EnglishSymplectic ElementsCambridge University Press2024Aubert, A-MCiubotaru, DRomano, B<p>We define an involution on the elliptic space of tempered unipotent representations of inner twists of a split simple <em>p</em>-adic group <em>G</em> and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups. In particular, we formulate a precise conjecture about the relation with a version of Lusztig&rsquo;s nonabelian Fourier transform on the space of unipotent representations of the (possibly disconnected) reductive quotients of maximal compact subgroups. We give evidence for the conjecture, including proofs for SL<sub><em>n</em></sub> and PGL<sub><em>n</em></sub>.</p>
spellingShingle Aubert, A-M
Ciubotaru, D
Romano, B
A nonabelian Fourier transform for tempered unipotent representations
title A nonabelian Fourier transform for tempered unipotent representations
title_full A nonabelian Fourier transform for tempered unipotent representations
title_fullStr A nonabelian Fourier transform for tempered unipotent representations
title_full_unstemmed A nonabelian Fourier transform for tempered unipotent representations
title_short A nonabelian Fourier transform for tempered unipotent representations
title_sort nonabelian fourier transform for tempered unipotent representations
work_keys_str_mv AT aubertam anonabelianfouriertransformfortemperedunipotentrepresentations
AT ciubotarud anonabelianfouriertransformfortemperedunipotentrepresentations
AT romanob anonabelianfouriertransformfortemperedunipotentrepresentations
AT aubertam nonabelianfouriertransformfortemperedunipotentrepresentations
AT ciubotarud nonabelianfouriertransformfortemperedunipotentrepresentations
AT romanob nonabelianfouriertransformfortemperedunipotentrepresentations