Remotely sensed rivers in the Anthropocene: state of the art and prospects
The rivers of the world are undergoing accelerated change in the Anthropocene, and need to be managed at much broader spatial and temporal scales than before. Fluvial remote sensing now offers a technical and methodological framework that can be deployed to monitor the processes at work and to asses...
Những tác giả chính: | , , , , , , , , , |
---|---|
Tác giả khác: | |
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Wiley
2019
|
_version_ | 1826299068817604608 |
---|---|
author | Piégay, H Arnaud, F Belletti, B Bertrand, M Bizzi, S Carbonneau, P Dufour, S Liébault, F Ruiz-Villanueva, V Slater, L |
author2 | Lane, S |
author_facet | Lane, S Piégay, H Arnaud, F Belletti, B Bertrand, M Bizzi, S Carbonneau, P Dufour, S Liébault, F Ruiz-Villanueva, V Slater, L |
author_sort | Piégay, H |
collection | OXFORD |
description | The rivers of the world are undergoing accelerated change in the Anthropocene, and need to be managed at much broader spatial and temporal scales than before. Fluvial remote sensing now offers a technical and methodological framework that can be deployed to monitor the processes at work and to assess the trajectories of rivers in the Anthropocene. In this paper, we review research investigating past, present and future fluvial corridor conditions and processes using remote sensing and we consider emerging challenges facing fluvial and riparian research. We introduce a suite of remote sensing methods designed to diagnose river changes at reach to regional scales. We then focus on identification of channel patterns and acting processes from satellite, airborne or ground acquisitions. These techniques range from grain scales to landform scales, and from real time scales to inter-annual scales. We discuss how remote sensing data can now be coupled to catchment scale models that simulate sediment transfer within connected river networks. We also consider future opportunities in terms of datasets and other resources which are likely to impact river management and monitoring at the global scale. We conclude with a summary of challenges and prospects for remotely sensed rivers in the Anthropocene. |
first_indexed | 2024-03-07T04:56:17Z |
format | Journal article |
id | oxford-uuid:d6b734dd-f2e4-431f-8ca3-49f9e1c8b45d |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T04:56:17Z |
publishDate | 2019 |
publisher | Wiley |
record_format | dspace |
spelling | oxford-uuid:d6b734dd-f2e4-431f-8ca3-49f9e1c8b45d2022-03-27T08:35:46ZRemotely sensed rivers in the Anthropocene: state of the art and prospectsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:d6b734dd-f2e4-431f-8ca3-49f9e1c8b45dEnglishSymplectic Elements at OxfordWiley2019Piégay, HArnaud, FBelletti, BBertrand, MBizzi, SCarbonneau, PDufour, SLiébault, FRuiz-Villanueva, VSlater, LLane, SThe rivers of the world are undergoing accelerated change in the Anthropocene, and need to be managed at much broader spatial and temporal scales than before. Fluvial remote sensing now offers a technical and methodological framework that can be deployed to monitor the processes at work and to assess the trajectories of rivers in the Anthropocene. In this paper, we review research investigating past, present and future fluvial corridor conditions and processes using remote sensing and we consider emerging challenges facing fluvial and riparian research. We introduce a suite of remote sensing methods designed to diagnose river changes at reach to regional scales. We then focus on identification of channel patterns and acting processes from satellite, airborne or ground acquisitions. These techniques range from grain scales to landform scales, and from real time scales to inter-annual scales. We discuss how remote sensing data can now be coupled to catchment scale models that simulate sediment transfer within connected river networks. We also consider future opportunities in terms of datasets and other resources which are likely to impact river management and monitoring at the global scale. We conclude with a summary of challenges and prospects for remotely sensed rivers in the Anthropocene. |
spellingShingle | Piégay, H Arnaud, F Belletti, B Bertrand, M Bizzi, S Carbonneau, P Dufour, S Liébault, F Ruiz-Villanueva, V Slater, L Remotely sensed rivers in the Anthropocene: state of the art and prospects |
title | Remotely sensed rivers in the Anthropocene: state of the art and prospects |
title_full | Remotely sensed rivers in the Anthropocene: state of the art and prospects |
title_fullStr | Remotely sensed rivers in the Anthropocene: state of the art and prospects |
title_full_unstemmed | Remotely sensed rivers in the Anthropocene: state of the art and prospects |
title_short | Remotely sensed rivers in the Anthropocene: state of the art and prospects |
title_sort | remotely sensed rivers in the anthropocene state of the art and prospects |
work_keys_str_mv | AT piegayh remotelysensedriversintheanthropocenestateoftheartandprospects AT arnaudf remotelysensedriversintheanthropocenestateoftheartandprospects AT bellettib remotelysensedriversintheanthropocenestateoftheartandprospects AT bertrandm remotelysensedriversintheanthropocenestateoftheartandprospects AT bizzis remotelysensedriversintheanthropocenestateoftheartandprospects AT carbonneaup remotelysensedriversintheanthropocenestateoftheartandprospects AT dufours remotelysensedriversintheanthropocenestateoftheartandprospects AT liebaultf remotelysensedriversintheanthropocenestateoftheartandprospects AT ruizvillanuevav remotelysensedriversintheanthropocenestateoftheartandprospects AT slaterl remotelysensedriversintheanthropocenestateoftheartandprospects |