The combination of pulsed acousto-optic imaging and B-mode diagnostic ultrasound for three-dimensional imaging in ex vivo biological tissue

A multimode imaging system, producing conventional ultrasound (US) and acousto-optic (AO) images, has been developed and used to detect optical absorbers buried in excised biological tissue. A commercially-available diagnostic ultrasound imaging transducer is used to both generate B-mode ultrasound...

Popoln opis

Bibliografske podrobnosti
Main Authors: Sui, L, Murray, T, Roy, R
Format: Conference item
Jezik:English
Izdano: Society of Photo-optical Instrumentation Engineers 2006
Opis
Izvleček:A multimode imaging system, producing conventional ultrasound (US) and acousto-optic (AO) images, has been developed and used to detect optical absorbers buried in excised biological tissue. A commercially-available diagnostic ultrasound imaging transducer is used to both generate B-mode ultrasound images and as a pump for AO imaging. Due to the fact that the steered and focused beam used for US imaging and the US source for pumping the AO image are generated from the same ultrasound probe, the acoustical and optical images are intrinsically co-registered. AO imaging is performed using short ultrasound pulse trains at a frequency of 5 MHz. The phase-modulated light emitted from the interaction region is detected using a photorefractive-crystal based interferometry system. Experimental results have previously been presented for the two-dimensional imaging in tissue-mimicking phantoms. In this paper, we report further experimental developments demonstrating three-dimensional fusion of B-mode ultrasound imaging and pulsed acousto-optic imaging in excised biological tissue (~2 cm thick). By mechanically scanning the ultrasound transducer array in a direction perpendicular to its imaging plane, both the acoustical and optical properties of an embedded target are obtained in three dimensions. The results suggest that AO imaging could be used to supplement conventional B-mode ultrasound imaging with optical contrast, and the multimode imaging system may find application in the detection and diagnosis of cancer.