The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster.

Three iron-sulfur proteins–HydE, HydF, and HydG–play a key role in the synthesis of the [2Fe]<sub>H</sub> component of the catalytic H-cluster of FeFe hydrogenase. The radical <em>S</em>-adenosyl-<span style="font-variant: small-caps;">l</span>-methionin...

Celý popis

Podrobná bibliografie
Hlavní autoři: Kuchenreuther, J, Myers, W, Suess, D, Stich, T, Pelmenschikov, V, Shiigi, SA, Cramer, S, Swartz, JR, Britt, R, George, S
Médium: Journal article
Jazyk:English
Vydáno: American Association for the Advancement of Science 2014
Popis
Shrnutí:Three iron-sulfur proteins–HydE, HydF, and HydG–play a key role in the synthesis of the [2Fe]<sub>H</sub> component of the catalytic H-cluster of FeFe hydrogenase. The radical <em>S</em>-adenosyl-<span style="font-variant: small-caps;">l</span>-methionine enzyme HydG lyses free tyrosine to produce <em>p</em>-cresol and the CO and CN<sup>−</sup> ligands of the [2Fe]<sub>H</sub> cluster. Here, we applied stopped-flow Fourier transform infrared and electron-nuclear double resonance spectroscopies to probe the formation of HydG-bound Fe-containing species bearing CO and CN<sup>−</sup> ligands with spectroscopic signatures that evolve on the 1- to 1000-second time scale. Through study of the <sup>13</sup>C, <sup>15</sup>N, and <sup>57</sup>Fe isotopologs of these intermediates and products, we identify the final HydG-bound species as an organometallic Fe(CO)<sub>2</sub>(CN) synthon that is ultimately transferred to apohydrogenase to form the [2Fe]<sub>H</sub> component of the H-cluster.