Approximately counting locally-optimal structures
In general, constructing a locally-optimal structure is a little harder than constructing an arbitrary structure, but significantly easier than constructing a globally-optimal structure. A similar situation arises in listing. In counting, most problems are #P-complete, but in approximate counting we...
Main Authors: | , , |
---|---|
Format: | Journal article |
Published: |
Elsevier
2016
|
Summary: | In general, constructing a locally-optimal structure is a little harder than constructing an arbitrary structure, but significantly easier than constructing a globally-optimal structure. A similar situation arises in listing. In counting, most problems are #P-complete, but in approximate counting we observe an interesting reversal of the pattern. Assuming that #BIS is not equivalent to #SAT under AP-reductions, we show that counting maximal independent sets in bipartite graphs is harder than counting maximum independent sets. Motivated by this, we show that various counting problems involving minimal separators are #SAT-hard to approximate. These problems have applications for constructing triangulations and phylogenetic trees. |
---|