The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo
Mutation of human microcephalin (MCPH1) causes autosomal recessive primary microcephaly, a developmental disorder characterized by reduced brain size. We identified mcphl, the Drosophila homolog of MCPH1, in a genetic screen for regulators of S-M cycles in the early embryo. Embryos of null mcph1 fem...
Main Authors: | , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2007
|
_version_ | 1797097866612703232 |
---|---|
author | Rickmyre, J DasGupta, S Ooi, D Keel, J Lee, E Kirschner, M Waddell, S Lee, L |
author_facet | Rickmyre, J DasGupta, S Ooi, D Keel, J Lee, E Kirschner, M Waddell, S Lee, L |
author_sort | Rickmyre, J |
collection | OXFORD |
description | Mutation of human microcephalin (MCPH1) causes autosomal recessive primary microcephaly, a developmental disorder characterized by reduced brain size. We identified mcphl, the Drosophila homolog of MCPH1, in a genetic screen for regulators of S-M cycles in the early embryo. Embryos of null mcph1 female flies undergo mitotic arrest with barrel-shaped spindles lacking centrosomes. Mutation of Chk2 suppresses these defects, indicating that they occur secondary to a previously described Chk2-mediated response to mitotic entry with unreplicated or damaged DNA. mcph1 embryos exhibit genomic instability as evidenced by frequent chromatin bridging in anaphase. In contrast to studies of human MCPH1, the ATR/Chk1-mediated DNA checkpoint is intact in Drosophila mcph1 mutants. Components of this checkpoint, however, appear to cooperate with MCPH1 to regulate embryonic cell cycles in a manner independent of Cdk1 phosphorylation. We propose a model in which MCPH1 coordinates the S-M transition in fly embryos: in the absence of mcph1, premature chromosome ondensation results in mitotic entry with unreplicated DNA, genomic instability, and Chk2-mediated mitotic arrest. Finally, brains of mcph1 adult male flies have defects in mushroom body structure, suggesting an evolutionarily conserved role for MCPH1 in brain development. |
first_indexed | 2024-03-07T05:01:25Z |
format | Journal article |
id | oxford-uuid:d866be29-7b58-4a77-b9ad-b4962599e825 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T05:01:25Z |
publishDate | 2007 |
record_format | dspace |
spelling | oxford-uuid:d866be29-7b58-4a77-b9ad-b4962599e8252022-03-27T08:48:22ZThe Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryoJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:d866be29-7b58-4a77-b9ad-b4962599e825EnglishSymplectic Elements at Oxford2007Rickmyre, JDasGupta, SOoi, DKeel, JLee, EKirschner, MWaddell, SLee, LMutation of human microcephalin (MCPH1) causes autosomal recessive primary microcephaly, a developmental disorder characterized by reduced brain size. We identified mcphl, the Drosophila homolog of MCPH1, in a genetic screen for regulators of S-M cycles in the early embryo. Embryos of null mcph1 female flies undergo mitotic arrest with barrel-shaped spindles lacking centrosomes. Mutation of Chk2 suppresses these defects, indicating that they occur secondary to a previously described Chk2-mediated response to mitotic entry with unreplicated or damaged DNA. mcph1 embryos exhibit genomic instability as evidenced by frequent chromatin bridging in anaphase. In contrast to studies of human MCPH1, the ATR/Chk1-mediated DNA checkpoint is intact in Drosophila mcph1 mutants. Components of this checkpoint, however, appear to cooperate with MCPH1 to regulate embryonic cell cycles in a manner independent of Cdk1 phosphorylation. We propose a model in which MCPH1 coordinates the S-M transition in fly embryos: in the absence of mcph1, premature chromosome ondensation results in mitotic entry with unreplicated DNA, genomic instability, and Chk2-mediated mitotic arrest. Finally, brains of mcph1 adult male flies have defects in mushroom body structure, suggesting an evolutionarily conserved role for MCPH1 in brain development. |
spellingShingle | Rickmyre, J DasGupta, S Ooi, D Keel, J Lee, E Kirschner, M Waddell, S Lee, L The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo |
title | The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo |
title_full | The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo |
title_fullStr | The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo |
title_full_unstemmed | The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo |
title_short | The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo |
title_sort | drosophila homolog of mcph1 a human microcephaly gene is required for genomic stability in the early embryo |
work_keys_str_mv | AT rickmyrej thedrosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT dasguptas thedrosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT ooid thedrosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT keelj thedrosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT leee thedrosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT kirschnerm thedrosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT waddells thedrosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT leel thedrosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT rickmyrej drosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT dasguptas drosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT ooid drosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT keelj drosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT leee drosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT kirschnerm drosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT waddells drosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo AT leel drosophilahomologofmcph1ahumanmicrocephalygeneisrequiredforgenomicstabilityintheearlyembryo |