Multiple decoherence-free states in multi-spin systems.
A numerical procedure is presented for mapping the vicinity of the null-space of the spin relaxation superoperator. The states populating this space, i.e. those with near-zero eigenvalues, of which the two-spin singlet is a well-studied example, are long-lived compared to the conventional T(1) and T...
Главные авторы: | , , |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2011
|
Итог: | A numerical procedure is presented for mapping the vicinity of the null-space of the spin relaxation superoperator. The states populating this space, i.e. those with near-zero eigenvalues, of which the two-spin singlet is a well-studied example, are long-lived compared to the conventional T(1) and T(2) spin-relaxation times. The analysis of larger spin systems described herein reveals the presence of a significant number of other slowly relaxing states. A study of coupling topologies for n-spin systems (4≤n≤8) suggests the symmetry requirements for maximising the number of long-lived states. |
---|