Phosphorylation of PNKP by ATM prevents its proteasomal degradation and enhances resistance to oxidative stress.

We examined the mechanism regulating the cellular levels of PNKP, the major kinase/phosphatase involved in the repair of oxidative DNA damage, and find that it is controlled by ATM phosphorylation and ubiquitylation-dependent proteasomal degradation. We discovered that ATM-dependent phosphorylation...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Parsons, J, Khoronenkova, S, Dianova, I, Ternette, N, Kessler, B, Datta, P, Dianov, G
Format: Journal article
Język:English
Wydane: Oxford University Press 2012
Opis
Streszczenie:We examined the mechanism regulating the cellular levels of PNKP, the major kinase/phosphatase involved in the repair of oxidative DNA damage, and find that it is controlled by ATM phosphorylation and ubiquitylation-dependent proteasomal degradation. We discovered that ATM-dependent phosphorylation of PNKP at serines 114 and 126 in response to oxidative DNA damage inhibits ubiquitylation-dependent proteasomal degradation of PNKP, and consequently increases PNKP stability that is required for DNA repair. We have also purified a novel Cul4A-DDB1 ubiquitin ligase complex responsible for PNKP ubiquitylation and identify serine-threonine kinase receptor associated protein (STRAP) as the adaptor protein that provides specificity of the complex to PNKP. Strap(-/-) mouse embryonic fibroblasts subsequently contain elevated cellular levels of PNKP, and show elevated resistance to oxidative DNA damage. These data demonstrate an important role for ATM and the Cul4A-DDB1-STRAP ubiquitin ligase in the regulation of the cellular levels of PNKP, and consequently in the repair of oxidative DNA damage.