Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware
A reduction of computational cost would allow higher resolution in numerical weather predictions within the same budget for computation. This paper investigates two approaches that promise significant savings in computational cost: the use of reduced precision hardware, which reduces floating point...
Những tác giả chính: | Dueben, P, Palmer, T |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
American Meteorological Society
2014
|
Những quyển sách tương tự
-
On the use of inexact, pruned hardware in atmospheric modelling.
Bằng: Düben, P, et al.
Được phát hành: (2014) -
Machine learning emulation of gravity wave drag in numerical weather forecasting
Bằng: Chantry, M, et al.
Được phát hành: (2021) -
WeatherBench: A Benchmark Data Set for Data‐Driven Weather Forecasting
Bằng: Stephan Rasp, et al.
Được phát hành: (2020-11-01) -
Machine Learning Emulation of Gravity Wave Drag in Numerical Weather Forecasting
Bằng: Matthew Chantry, et al.
Được phát hành: (2021-07-01) -
An approach to secure weather and climate models against hardware faults
Bằng: Dueben, P, et al.
Được phát hành: (2017)