Deflation for semismooth equations
Variational inequalities can in general support distinct solutions. In this paper we study an algorithm for computing distinct solutions of a variational inequality, without varying the initial guess supplied to the solver. The central idea is the combination of a semismooth Newton method with a def...
Autores principales: | Farrell, P, Croci, M, Surowiec, T |
---|---|
Formato: | Journal article |
Lenguaje: | English |
Publicado: |
Taylor and Francis
2019
|
Ejemplares similares
-
Semismooth Function on Riemannian Manifolds
por: E. Ghahraei
Publicado: (2011-06-01) -
Sparse-spike seismic inversion with semismooth newton algorithm solver
por: Ronghuo Dai
Publicado: (2024-08-01) -
Computing stationary solutions of the two-dimensional Gross–Pitaevskii equation with deflated continuation
por: Charalampidis, E, et al.
Publicado: (2017) -
On strong semismoothness and superlinear convergence of complementarity problems over homogeneous cones
por: Nguyen, Hai Ha
Publicado: (2018) -
Deflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equation
por: Boullé, N, et al.
Publicado: (2020)