On the hardness of robust classification
It is becoming increasingly important to understand the vulnerability of machine learning models to adversarial attacks. In this paper we study the feasibility of adversarially robust learning from the perspective of computational learning theory, considering both sample and computational complexity...
Hlavní autoři: | Gourdeau, P, Kanade, V, Kwiatkowska, M, Worrell, J |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Journal of Machine Learning Research
2021
|
Podobné jednotky
-
On the hardness of robust classification
Autor: Gourdeau, P, a další
Vydáno: (2019) -
When are local queries useful for robust learning?
Autor: Gourdeau, P, a další
Vydáno: (2023) -
Sample complexity bounds for robustly learning decision lists against evasion attacks
Autor: Gourdeau, P, a další
Vydáno: (2022) -
Sample complexity of robust learning against evasion attacks
Autor: Gourdeau, P
Vydáno: (2023) -
Adversarial robustness guarantees for classification with Gaussian Processes
Autor: Blaas, A, a další
Vydáno: (2020)