Exploiting temporal context for 3D human pose estimation in the wild
We present a bundle-adjustment-based algorithm for recovering accurate 3D human pose and meshes from monocular videos. Unlike previous algorithms which operate on single frames, we show that reconstructing a person over an entire sequence gives extra constraints that can resolve ambiguities. This is...
Principais autores: | Arnab, A, Doersch, C, Zisserman, A |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
IEEE
2020
|
Registros relacionados
-
Sim2real transfer learning for 3D human pose estimation: motion to the rescue
por: Doersch, C, et al.
Publicado em: (2020) -
Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks
por: Cai, Yujun, et al.
Publicado em: (2019) -
Recurrent human pose estimation
por: Belagiannis, V, et al.
Publicado em: (2016) -
Recurrent human pose estimation
por: Belagiannis, V, et al.
Publicado em: (2017) -
2D human pose estimation in TV shows
por: Ferrari, V, et al.
Publicado em: (2009)