Generating synthetic mixed-type longitudinal electronic health records for artificial intelligent applications
<p>The recent availability of electronic health records (EHRs) have provided enormous opportunities to develop artificial intelligence (AI) algorithms. However, patient privacy has become a major concern that limits data sharing across hospital settings and subsequently hinders the advances in...
主要な著者: | Li, J, Cairns, BJ, Zhu, T |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer Nature
2023
|
類似資料
-
Generating synthetic mixed-type longitudinal electronic health records for artificial intelligent applications
著者:: Jin Li, 等
出版事項: (2023-05-01) -
On the evaluation of synthetic longitudinal electronic health records
著者:: Jim L. Achterberg, 等
出版事項: (2024-08-01) -
Generative artificial intelligence: synthetic datasets in dentistry
著者:: Fahad Umer, 等
出版事項: (2024-03-01) -
Synthetic electronic health records generated with variational graph autoencoders
著者:: Giannis Nikolentzos, 等
出版事項: (2023-04-01) -
A Multifaceted benchmarking of synthetic electronic health record generation models
著者:: Chao Yan, 等
出版事項: (2022-12-01)