Efficient multifidelity likelihood-free Bayesian inference with adaptive computational resource allocation
Likelihood-free Bayesian inference algorithms are popular methods for inferring the parameters of complex stochastic models with intractable likelihoods. These algorithms characteristically rely heavily on repeated model simulations. However, whenever the computational cost of simulation is even mod...
المؤلفون الرئيسيون: | Prescott, T, Warne, D, Baker, R |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Elsevier
2023
|
مواد مشابهة
-
Multifidelity approximate Bayesian computation
حسب: Prescott, T, وآخرون
منشور في: (2020) -
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
حسب: Warne, D, وآخرون
منشور في: (2022) -
Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling
حسب: Prescott, TP, وآخرون
منشور في: (2021) -
Likelihood-free Bayesian inference for dynamic, stochastic simulators in the social sciences
حسب: Dyer, J
منشور في: (2022) -
Adaptive active subspace-based efficient multifidelity materials design
حسب: Danial Khatamsaz, وآخرون
منشور في: (2021-11-01)