Efficient multifidelity likelihood-free Bayesian inference with adaptive computational resource allocation
Likelihood-free Bayesian inference algorithms are popular methods for inferring the parameters of complex stochastic models with intractable likelihoods. These algorithms characteristically rely heavily on repeated model simulations. However, whenever the computational cost of simulation is even mod...
Κύριοι συγγραφείς: | Prescott, T, Warne, D, Baker, R |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
Elsevier
2023
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Multifidelity approximate Bayesian computation
ανά: Prescott, T, κ.ά.
Έκδοση: (2020) -
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
ανά: Warne, D, κ.ά.
Έκδοση: (2022) -
Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling
ανά: Prescott, TP, κ.ά.
Έκδοση: (2021) -
Likelihood-free Bayesian inference for dynamic, stochastic simulators in the social sciences
ανά: Dyer, J
Έκδοση: (2022) -
Adaptive active subspace-based efficient multifidelity materials design
ανά: Danial Khatamsaz, κ.ά.
Έκδοση: (2021-11-01)