Efficient multifidelity likelihood-free Bayesian inference with adaptive computational resource allocation
Likelihood-free Bayesian inference algorithms are popular methods for inferring the parameters of complex stochastic models with intractable likelihoods. These algorithms characteristically rely heavily on repeated model simulations. However, whenever the computational cost of simulation is even mod...
Main Authors: | Prescott, T, Warne, D, Baker, R |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
Elsevier
2023
|
Títulos similares
-
Multifidelity approximate Bayesian computation
por: Prescott, T, et al.
Publicado: (2020) -
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
por: Warne, D, et al.
Publicado: (2022) -
Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling
por: Prescott, TP, et al.
Publicado: (2021) -
Likelihood-free Bayesian inference for dynamic, stochastic simulators in the social sciences
por: Dyer, J
Publicado: (2022) -
Adaptive active subspace-based efficient multifidelity materials design
por: Danial Khatamsaz, et al.
Publicado: (2021-11-01)