Efficient multifidelity likelihood-free Bayesian inference with adaptive computational resource allocation
Likelihood-free Bayesian inference algorithms are popular methods for inferring the parameters of complex stochastic models with intractable likelihoods. These algorithms characteristically rely heavily on repeated model simulations. However, whenever the computational cost of simulation is even mod...
Main Authors: | Prescott, T, Warne, D, Baker, R |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Elsevier
2023
|
פריטים דומים
-
Multifidelity approximate Bayesian computation
מאת: Prescott, T, et al.
יצא לאור: (2020) -
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
מאת: Warne, D, et al.
יצא לאור: (2022) -
Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling
מאת: Prescott, TP, et al.
יצא לאור: (2021) -
Likelihood-free Bayesian inference for dynamic, stochastic simulators in the social sciences
מאת: Dyer, J
יצא לאור: (2022) -
Adaptive active subspace-based efficient multifidelity materials design
מאת: Danial Khatamsaz, et al.
יצא לאור: (2021-11-01)