Efficient multifidelity likelihood-free Bayesian inference with adaptive computational resource allocation
Likelihood-free Bayesian inference algorithms are popular methods for inferring the parameters of complex stochastic models with intractable likelihoods. These algorithms characteristically rely heavily on repeated model simulations. However, whenever the computational cost of simulation is even mod...
Главные авторы: | Prescott, T, Warne, D, Baker, R |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Elsevier
2023
|
Схожие документы
-
Multifidelity approximate Bayesian computation
по: Prescott, T, и др.
Опубликовано: (2020) -
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
по: Warne, D, и др.
Опубликовано: (2022) -
Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling
по: Prescott, TP, и др.
Опубликовано: (2021) -
Likelihood-free Bayesian inference for dynamic, stochastic simulators in the social sciences
по: Dyer, J
Опубликовано: (2022) -
Adaptive active subspace-based efficient multifidelity materials design
по: Danial Khatamsaz, и др.
Опубликовано: (2021-11-01)