On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations
Local regularity of axially symmetric solutions to the Navier-Stokes equations is studied. It is shown that under certain natural assumptions there are no singularities of Type I. © Taylor and Francis Group, LLC.
Hlavní autoři: | Seregin, G, Sverak, V |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2009
|
Podobné jednotky
-
On the number of singular points of weak solutions to the Navier-Stokes equations
Autor: Seregin, G
Vydáno: (2001) -
Liouville theorems for the Navier-Stokes equations and applications
Autor: Koch, G, a další
Vydáno: (2009) -
Liouville theorems for the Navier-Stokes equations and applications
Autor: Koch, G, a další
Vydáno: (2009) -
On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L3-initial data
Autor: Seregin, G, a další
Vydáno: (2016) -
On stability of weak Navier–Stokes solutions with large L 3,∞ initial data
Autor: Barker, T, a další
Vydáno: (2018)