Aggregation kinetics of stiff polyelectrolytes in the presence of multivalent salt.

Using molecular dynamics simulations, the kinetics of bundle formation for stiff polyelectrolytes such as actin is studied in the solution of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one rod meeting others at a right angle due to electrostatic...

Popoln opis

Bibliografske podrobnosti
Main Authors: Fazli, H, Golestanian, R
Format: Journal article
Jezik:English
Izdano: 2007
Opis
Izvleček:Using molecular dynamics simulations, the kinetics of bundle formation for stiff polyelectrolytes such as actin is studied in the solution of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one rod meeting others at a right angle due to electrostatic interactions. The kinetic pathway to bundle formation involves a hierarchical structure of small clusters forming initially and then feeding into larger clusters, which is reminiscent of the flocculation dynamics of colloids. For the first few cluster sizes, the Smoluchowski formula for the time evolution of the cluster size gives a reasonable account of the results of our simulation without a single fitting parameter. The description using the Smoluchowski formula provides evidence for the aggregation time scale to be controlled by diffusion, with no appreciable energy barrier to overcome.