Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation.

A classical twin study was performed to assess the relative contribution of genetic and environmental factors to bone metabolism, calcium homeostasis, and the hormones regulating them. It was examined further whether the genetic effect is menopause dependent. The subjects were 2136 adult twins (98.3...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Hunter, D, De Lange, M, Snieder, H, MacGregor, A, Swaminathan, R, Thakker, R, Spector, T
Ձևաչափ: Journal article
Լեզու:English
Հրապարակվել է: 2001
_version_ 1826300131352248320
author Hunter, D
De Lange, M
Snieder, H
MacGregor, A
Swaminathan, R
Thakker, R
Spector, T
author_facet Hunter, D
De Lange, M
Snieder, H
MacGregor, A
Swaminathan, R
Thakker, R
Spector, T
author_sort Hunter, D
collection OXFORD
description A classical twin study was performed to assess the relative contribution of genetic and environmental factors to bone metabolism, calcium homeostasis, and the hormones regulating them. It was examined further whether the genetic effect is menopause dependent. The subjects were 2136 adult twins (98.3% female): 384 monozygotic (MZ) and 684 dizygotic (DZ) twin pairs. The intraclass correlations were calculated, and maximum likelihood model fitting was used to estimate genetic and environmental variance components. The intraclass correlations for all of the variables assessed were higher in MZ twin pairs. The heritabilities (95% CIs) obtained from model fitting for hormones regulating bone metabolism and calcium homeostasis were parathyroid hormone (PTH), 60% (54-65%); 25-hydroxyvitamin D [25(OH)D]; 43% (28-57%), 1,25-hydroxyvitamin D [1,25(OH)], 65% (53-74%); and vitamin D binding protein 62% (56-66%). The heritabilities (95% CIs) for markers of bone formation also were assessed; bone-specific alkaline phosphatase (BSAP), 74% (67-80%), and osteocalcin, 29% (14-44%); marker of bone resorption deoxypyridinoline (DPD), 58% (52-64%); and measure of calcium homeostasis 24 h urine calcium, creatinine (Cr), 52% (41-61%). The magnitude of genetic influence differed with menopause for most variables. This study provides evidence for the importance of genetic factors in determining bone resorption and formation, calcium excretion, and the hormones regulating these processes. It shows for the first time a clear genetic effect on bone resorption in premenopausal women and the regulation of PTH, vitamin D metabolism, and calcium excretion. The genes controlling bone hormones and markers are likely to be useful therapeutic and diagnostic targets.
first_indexed 2024-03-07T05:12:30Z
format Journal article
id oxford-uuid:dc09d89e-932e-4c0e-a8aa-ee4f286d7119
institution University of Oxford
language English
last_indexed 2024-03-07T05:12:30Z
publishDate 2001
record_format dspace
spelling oxford-uuid:dc09d89e-932e-4c0e-a8aa-ee4f286d71192022-03-27T09:14:56ZGenetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:dc09d89e-932e-4c0e-a8aa-ee4f286d7119EnglishSymplectic Elements at Oxford2001Hunter, DDe Lange, MSnieder, HMacGregor, ASwaminathan, RThakker, RSpector, TA classical twin study was performed to assess the relative contribution of genetic and environmental factors to bone metabolism, calcium homeostasis, and the hormones regulating them. It was examined further whether the genetic effect is menopause dependent. The subjects were 2136 adult twins (98.3% female): 384 monozygotic (MZ) and 684 dizygotic (DZ) twin pairs. The intraclass correlations were calculated, and maximum likelihood model fitting was used to estimate genetic and environmental variance components. The intraclass correlations for all of the variables assessed were higher in MZ twin pairs. The heritabilities (95% CIs) obtained from model fitting for hormones regulating bone metabolism and calcium homeostasis were parathyroid hormone (PTH), 60% (54-65%); 25-hydroxyvitamin D [25(OH)D]; 43% (28-57%), 1,25-hydroxyvitamin D [1,25(OH)], 65% (53-74%); and vitamin D binding protein 62% (56-66%). The heritabilities (95% CIs) for markers of bone formation also were assessed; bone-specific alkaline phosphatase (BSAP), 74% (67-80%), and osteocalcin, 29% (14-44%); marker of bone resorption deoxypyridinoline (DPD), 58% (52-64%); and measure of calcium homeostasis 24 h urine calcium, creatinine (Cr), 52% (41-61%). The magnitude of genetic influence differed with menopause for most variables. This study provides evidence for the importance of genetic factors in determining bone resorption and formation, calcium excretion, and the hormones regulating these processes. It shows for the first time a clear genetic effect on bone resorption in premenopausal women and the regulation of PTH, vitamin D metabolism, and calcium excretion. The genes controlling bone hormones and markers are likely to be useful therapeutic and diagnostic targets.
spellingShingle Hunter, D
De Lange, M
Snieder, H
MacGregor, A
Swaminathan, R
Thakker, R
Spector, T
Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation.
title Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation.
title_full Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation.
title_fullStr Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation.
title_full_unstemmed Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation.
title_short Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation.
title_sort genetic contribution to bone metabolism calcium excretion and vitamin d and parathyroid hormone regulation
work_keys_str_mv AT hunterd geneticcontributiontobonemetabolismcalciumexcretionandvitamindandparathyroidhormoneregulation
AT delangem geneticcontributiontobonemetabolismcalciumexcretionandvitamindandparathyroidhormoneregulation
AT sniederh geneticcontributiontobonemetabolismcalciumexcretionandvitamindandparathyroidhormoneregulation
AT macgregora geneticcontributiontobonemetabolismcalciumexcretionandvitamindandparathyroidhormoneregulation
AT swaminathanr geneticcontributiontobonemetabolismcalciumexcretionandvitamindandparathyroidhormoneregulation
AT thakkerr geneticcontributiontobonemetabolismcalciumexcretionandvitamindandparathyroidhormoneregulation
AT spectort geneticcontributiontobonemetabolismcalciumexcretionandvitamindandparathyroidhormoneregulation