Regularity of local minimizers of the interaction energy via obstacle problems
The repulsion strength at the origin for repulsive/attractive potentials determines the regularity of local minimizers of the interaction energy. In this paper, we show that if this repulsion is like Newtonian or more singular than Newtonian (but still locally integrable), then the local minimizers...
Principais autores: | Carrillo de la Plata, JA, Delgadino, MG, Mellet, A |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Springer Science and Business Media LLC
2016
|
Registros relacionados
-
Convergence of a particle method for a regularized spatially homogeneous Landau equation
por: Carrillo de la Plata, JA, et al.
Publicado em: (2023) -
A λ-convexity based proof for the propagation of chaos for weakly interacting stochastic particles
por: Carrillo de la Plata, JA, et al.
Publicado em: (2020) -
Existence of ground states for aggregation-diffusion equations
por: Carrillo de la Plata, JA, et al.
Publicado em: (2018) -
On the relationship between the thin film equation and Tanner's law
por: Delgadino, MG, et al.
Publicado em: (2020) -
Global minimizers of a large class of anisotropic attractive-repulsive interaction energies in 2D
por: Carrillo de la Plata, JA, et al.
Publicado em: (2023)