Approximately counting H-colourings is #BIS-hard
We consider the problem of counting H-colourings from an input graph G to a target graph H. We show that if H is any fixed graph without trivial components, then the problem is as hard as the well-known problem #BIS, which is the problem of (approximately) counting independent sets in a bipartite gr...
Hlavní autoři: | Galanis, A, Goldberg, L, Jerrum, M |
---|---|
Médium: | Journal article |
Vydáno: |
Society for Industrial and Applied Mathematics
2016
|
Podobné jednotky
-
Approximately counting H-colourings is BIS-Hard
Autor: Galanis, A, a další
Vydáno: (2015) -
A complexity trichotomy for approximately counting list H-colourings
Autor: Goldberg, L, a další
Vydáno: (2016) -
A complexity trichotomy for approximately counting list H-colourings
Autor: Galanis, A, a další
Vydáno: (2017) -
#BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region
Autor: Goldberg, L, a další
Vydáno: (2015) -
Approximating pairwise correlations in the Ising model
Autor: Goldberg, L, a další
Vydáno: (2019)