Interplay of recombination and selection in the genomes of Chlamydia trachomatis.

BACKGROUND: Chlamydia trachomatis is an obligate intracellular bacterial parasite, which causes several severe and debilitating diseases in humans. This study uses comparative genomic analyses of 12 complete published C. trachomatis genomes to assess the contribution of recombination and selection...

Full description

Bibliographic Details
Main Authors: Joseph, S, Didelot, X, Gandhi, K, Dean, D, Read, T
Format: Journal article
Language:English
Published: BioMed Central 2011
_version_ 1797098710249766912
author Joseph, S
Didelot, X
Gandhi, K
Dean, D
Read, T
author_facet Joseph, S
Didelot, X
Gandhi, K
Dean, D
Read, T
author_sort Joseph, S
collection OXFORD
description BACKGROUND: Chlamydia trachomatis is an obligate intracellular bacterial parasite, which causes several severe and debilitating diseases in humans. This study uses comparative genomic analyses of 12 complete published C. trachomatis genomes to assess the contribution of recombination and selection in this pathogen and to understand the major evolutionary forces acting on the genome of this bacterium. RESULTS: The conserved core genes of C. trachomatis are a large proportion of the pan-genome: we identified 836 core genes in C. trachomatis out of a range of 874-927 total genes in each genome. The ratio of recombination events compared to mutation (ρ/θ) was 0.07 based on ancestral reconstructions using the ClonalFrame tool, but recombination had a significant effect on genetic diversification (r/m=0.71). The distance-dependent decay of linkage disequilibrium also indicated that C. trachomatis populations behaved intermediately between sexual and clonal extremes. Fifty-five genes were identified as having a history of recombination and 92 were under positive selection based on statistical tests. Twenty-three genes showed evidence of being under both positive selection and recombination, which included genes with a known role in virulence and pathogencity (e.g., ompA, pmps, tarp). Analysis of inter-clade recombination flux indicated non-uniform currents of recombination between clades, which suggests the possibility of spatial population structure in C. trachomatis infections. CONCLUSIONS: C. trachomatis is the archetype of a bacterial species where recombination is relatively frequent yet gene gains by horizontal gene transfer (HGT) and losses (by deletion) are rare. Gene conversion occurs at sites across the whole C. trachomatis genome but may be more often fixed in genes that are under diversifying selection. Furthermore, genome sequencing will reveal patterns of serotype specific gene exchange and selection that will generate important research questions for understanding C. trachomatis pathogenesis. REVIEWERS: This article was reviewed by Dr. Jeremy Selengut, Dr. Lee S. Katz (nominated by Dr. I. King Jordan) and Dr. Arcady Mushegian.
first_indexed 2024-03-07T05:13:30Z
format Journal article
id oxford-uuid:dc59811f-0856-475c-a9a2-d03b5fc71373
institution University of Oxford
language English
last_indexed 2024-03-07T05:13:30Z
publishDate 2011
publisher BioMed Central
record_format dspace
spelling oxford-uuid:dc59811f-0856-475c-a9a2-d03b5fc713732022-03-27T09:17:15ZInterplay of recombination and selection in the genomes of Chlamydia trachomatis.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:dc59811f-0856-475c-a9a2-d03b5fc71373EnglishSymplectic Elements at OxfordBioMed Central2011Joseph, SDidelot, XGandhi, KDean, DRead, T BACKGROUND: Chlamydia trachomatis is an obligate intracellular bacterial parasite, which causes several severe and debilitating diseases in humans. This study uses comparative genomic analyses of 12 complete published C. trachomatis genomes to assess the contribution of recombination and selection in this pathogen and to understand the major evolutionary forces acting on the genome of this bacterium. RESULTS: The conserved core genes of C. trachomatis are a large proportion of the pan-genome: we identified 836 core genes in C. trachomatis out of a range of 874-927 total genes in each genome. The ratio of recombination events compared to mutation (ρ/θ) was 0.07 based on ancestral reconstructions using the ClonalFrame tool, but recombination had a significant effect on genetic diversification (r/m=0.71). The distance-dependent decay of linkage disequilibrium also indicated that C. trachomatis populations behaved intermediately between sexual and clonal extremes. Fifty-five genes were identified as having a history of recombination and 92 were under positive selection based on statistical tests. Twenty-three genes showed evidence of being under both positive selection and recombination, which included genes with a known role in virulence and pathogencity (e.g., ompA, pmps, tarp). Analysis of inter-clade recombination flux indicated non-uniform currents of recombination between clades, which suggests the possibility of spatial population structure in C. trachomatis infections. CONCLUSIONS: C. trachomatis is the archetype of a bacterial species where recombination is relatively frequent yet gene gains by horizontal gene transfer (HGT) and losses (by deletion) are rare. Gene conversion occurs at sites across the whole C. trachomatis genome but may be more often fixed in genes that are under diversifying selection. Furthermore, genome sequencing will reveal patterns of serotype specific gene exchange and selection that will generate important research questions for understanding C. trachomatis pathogenesis. REVIEWERS: This article was reviewed by Dr. Jeremy Selengut, Dr. Lee S. Katz (nominated by Dr. I. King Jordan) and Dr. Arcady Mushegian.
spellingShingle Joseph, S
Didelot, X
Gandhi, K
Dean, D
Read, T
Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
title Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
title_full Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
title_fullStr Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
title_full_unstemmed Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
title_short Interplay of recombination and selection in the genomes of Chlamydia trachomatis.
title_sort interplay of recombination and selection in the genomes of chlamydia trachomatis
work_keys_str_mv AT josephs interplayofrecombinationandselectioninthegenomesofchlamydiatrachomatis
AT didelotx interplayofrecombinationandselectioninthegenomesofchlamydiatrachomatis
AT gandhik interplayofrecombinationandselectioninthegenomesofchlamydiatrachomatis
AT deand interplayofrecombinationandselectioninthegenomesofchlamydiatrachomatis
AT readt interplayofrecombinationandselectioninthegenomesofchlamydiatrachomatis