Derivatives of the stochastic growth rate.
We consider stochastic matrix models for population driven by random environments which form a Markov chain. The top Lyapunov exponent a, which describes the long-term growth rate, depends smoothly on the demographic parameters (represented as matrix entries) and on the parameters that define the st...
Auteurs principaux: | Steinsaltz, D, Tuljapurkar, S, Horvitz, C |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2011
|
Documents similaires
-
Derivatives of the stochastic growth rate
par: Steinsaltz, D, et autres
Publié: (2011) -
Stochastic models for structured populations
par: Tuljapurkar, S, et autres
Publié: (2018) -
Temporal variability can promote migration between habitats
par: Jaggi, H, et autres
Publié: (2024) -
A new way to integrate selection when both demography and selection gradients vary over time.
par: Horvitz, C, et autres
Publié: (2010) -
A time to grow and a time to die: a new way to analyze the dynamics of size, light, age, and death of tropical trees.
par: Metcalf, C, et autres
Publié: (2009)