Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions

We prove global-in-time existence and uniqueness of measure solutions of a nonlocal interaction system of two species in one spatial dimension. For initial data including atomic parts we provide a notion of gradient-flow solutions in terms of the pseudo-inverses of the corresponding cumulative distr...

Full description

Bibliographic Details
Main Authors: Carrillo, JA, Di Francesco, M, Esposito, A, Fagioli, S, Schmidtchen, M
Format: Journal article
Language:English
Published: American Institute of Mathematical Sciences 2019
Description
Summary:We prove global-in-time existence and uniqueness of measure solutions of a nonlocal interaction system of two species in one spatial dimension. For initial data including atomic parts we provide a notion of gradient-flow solutions in terms of the pseudo-inverses of the corresponding cumulative distribution functions, for which the system can be stated as a gradient flow on the Hilbert space L2(0, 1)2 according to the classical theory by Brézis. For absolutely continuous initial data we construct solutions using a minimising movement scheme in the set of probability measures. In addition we show that the scheme preserves finiteness of the Lm-norms for all m ∈ [1, +∞] and of the second moments. We then provide a characterisation of equilibria and prove that they are achieved (up to time subsequences) in the large time asymptotics. We conclude the paper constructing two examples of non-uniqueness of measure solutions emanating from the same (atomic) initial datum, showing that the notion of gradient flow solution is necessary to single out a unique measure solution.