Hybrid computing using a neural network with dynamic external memory
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machin...
Auteurs principaux: | Graves, A, Wayne, G, Reynolds, M, Harley, T, Danihelka, I, Grabska-Barwińska, A, Colmenarejo, S, Grefenstette, E, Ramalho, T, Agapiou, J, Badia, A, Hermann, K, Zwols, Y, Ostrovski, G, Cain, A, King, H, Summerfield, C, Blunsom, P, Kavukcuoglu, K, Hassabis, D |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Nature Publishing Group
2016
|
Documents similaires
-
"Not not bad" is not "bad": A distributional account of negation
par: Hermann, K, et autres
Publié: (2013) -
New Directions in Vector Space Models of Meaning
par: Grefenstette, E, et autres
Publié: (2014) -
A Deep Architecture for Semantic Parsing
par: Grefenstette, E, et autres
Publié: (2014) -
Semantic parsing with semi-supervised sequential autoencoders
par: Kočiský, T, et autres
Publié: (2016) -
Neural mechanisms of hierarchical planning in a virtual subway network
par: Balaguer, J, et autres
Publié: (2016)