Hybrid computing using a neural network with dynamic external memory
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machin...
Main Authors: | Graves, A, Wayne, G, Reynolds, M, Harley, T, Danihelka, I, Grabska-Barwińska, A, Colmenarejo, S, Grefenstette, E, Ramalho, T, Agapiou, J, Badia, A, Hermann, K, Zwols, Y, Ostrovski, G, Cain, A, King, H, Summerfield, C, Blunsom, P, Kavukcuoglu, K, Hassabis, D |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Nature Publishing Group
2016
|
פריטים דומים
-
"Not not bad" is not "bad": A distributional account of negation
מאת: Hermann, K, et al.
יצא לאור: (2013) -
New Directions in Vector Space Models of Meaning
מאת: Grefenstette, E, et al.
יצא לאור: (2014) -
A Deep Architecture for Semantic Parsing
מאת: Grefenstette, E, et al.
יצא לאור: (2014) -
Semantic parsing with semi-supervised sequential autoencoders
מאת: Kočiský, T, et al.
יצא לאור: (2016) -
Neural mechanisms of hierarchical planning in a virtual subway network
מאת: Balaguer, J, et al.
יצא לאור: (2016)