Hybrid computing using a neural network with dynamic external memory
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machin...
主要な著者: | Graves, A, Wayne, G, Reynolds, M, Harley, T, Danihelka, I, Grabska-Barwińska, A, Colmenarejo, S, Grefenstette, E, Ramalho, T, Agapiou, J, Badia, A, Hermann, K, Zwols, Y, Ostrovski, G, Cain, A, King, H, Summerfield, C, Blunsom, P, Kavukcuoglu, K, Hassabis, D |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Nature Publishing Group
2016
|
類似資料
-
"Not not bad" is not "bad": A distributional account of negation
著者:: Hermann, K, 等
出版事項: (2013) -
New Directions in Vector Space Models of Meaning
著者:: Grefenstette, E, 等
出版事項: (2014) -
A Deep Architecture for Semantic Parsing
著者:: Grefenstette, E, 等
出版事項: (2014) -
Semantic parsing with semi-supervised sequential autoencoders
著者:: Kočiský, T, 等
出版事項: (2016) -
Neural mechanisms of hierarchical planning in a virtual subway network
著者:: Balaguer, J, 等
出版事項: (2016)