Multi-label random forest model for tuberculosis drug resistance classification and mutation ranking
Resistance prediction and mutation ranking are important tasks in the analysis of Tuberculosis sequence data. Due to standard regimens for the use of first-line antibiotics, resistance co-occurrence, in which samples are resistant to multiple drugs, is common. Analysing all drugs simultaneously shou...
Asıl Yazarlar: | Kouchaki, S, Yang, Y, Lapachelle, A, Walker, T, Walker, AS, CRyPTIC Consortium, Peto, T, Crook, D, Clifton, DA |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Frontiers Media
2020
|
Benzer Materyaller
-
Quantitative drug susceptibility testing for Mycobacterium tuberculosis using unassembled sequencing data and machine learning
Yazar:: The CRyPTIC consortium
Baskı/Yayın Bilgisi: (2024) -
Application of machine learning techniques to tuberculosis drug resistance analysis
Yazar:: Kouchaki, S, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction
Yazar:: Yang, Y, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing
Yazar:: Allix-Béguec, C, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis
Yazar:: Yang, Y, ve diğerleri
Baskı/Yayın Bilgisi: (2019)