Differentiable particle filtering via entropy-regularized optimal transport
Particle Filtering (PF) methods are an established class of procedures for performing inference in non-linear state-space models. Resampling is a key ingredient of PF necessary to obtain low variance likelihood and states estimates. However, traditional resampling methods result in PF-based loss fun...
المؤلفون الرئيسيون: | , , , |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Journal of Machine Learning Research
2021
|