Parallel NMR supersequences: ten spectra in a single measurement

The principles employed in parallel NMR and MRI are applied to NMR supersequences yielding as many as ten 2D NMR spectra in one measurement. We present a number of examples where two NOAH (NMR by Ordered Acquisition using 1H-detection) supersequences are recorded in parallel, thus dramatically incre...

Descrizione completa

Dettagli Bibliografici
Autori principali: Kupče, Ē, Yong, JRJ, Widmalm, G, Claridge, TDW
Natura: Journal article
Lingua:English
Pubblicazione: American Chemical Society 2021
Descrizione
Riassunto:The principles employed in parallel NMR and MRI are applied to NMR supersequences yielding as many as ten 2D NMR spectra in one measurement. We present a number of examples where two NOAH (NMR by Ordered Acquisition using 1H-detection) supersequences are recorded in parallel, thus dramatically increasing the information content obtained in a single NMR experiment. The two parallel supersequences entangled by time-sharing schemes (IPAP-seHSQC, HSQC-COSY, and HSQC-TOCSY) incorporate also modified (sequential and/or interleaved) conventional pulse schemes (modules), including HMBC, TOCSY, COSY, CLIP-COSY, NOESY, and ROESY. Such parallel supersequences can be tailored for specific applications, for instance, the analysis and characterization of molecular structure of complex organic molecules from a single measurement. In particular, the CASPER software was used to establish the structure of a tetrasaccharide, β-LNnTOMe, with a high degree of confidence from a single measurement involving a parallel NOAH-5 supersequence.