Decomposing random permutations into order-isomorphic subpermutations
<p>Two permutations σ and π are ℓ-similar if they can be decomposed into subpermutations σ<sup>(1)</sup>, . . . , σ<sup>(ℓ)</sup> and π<sup>(1)</sup>, . . . , π<sup>(ℓ)</sup> such that &sigma...
Main Authors: | , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Society for Industrial and Applied Mathematics
2023
|
_version_ | 1797110234271973376 |
---|---|
author | Groenland, C Johnston, T Korandi, D Roberts, A Scott, A Tan, J |
author_facet | Groenland, C Johnston, T Korandi, D Roberts, A Scott, A Tan, J |
author_sort | Groenland, C |
collection | OXFORD |
description | <p>Two permutations σ and π are ℓ-similar if they can be decomposed into subpermutations σ<sup>(1)</sup>, . . . , σ<sup>(ℓ)</sup> and π<sup>(1)</sup>, . . . , π<sup>(ℓ)</sup> such that σ<sup>(i)</sup> is orderisomorphic to π<sup>(i)</sup> for all i ∈ [ℓ]. Recently, Dudek, Grytczuk and Ruciński posed the problem of determining the minimum ℓ for which two permutations chosen independently and uniformly at random are ℓ-similar. We show that two such permutations are <em>O</em>(<em>n</em><sup>1/3</sup> log<sup>11/6</sup> (<em>n</em>))-similar with high probability, which is tight up to a polylogarithmic factor. Our result also generalises to simultaneous decompositions of multiple permutations.</p> |
first_indexed | 2024-03-07T07:52:13Z |
format | Journal article |
id | oxford-uuid:de6e9e39-a0db-46e4-a983-a76adb505989 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T07:52:13Z |
publishDate | 2023 |
publisher | Society for Industrial and Applied Mathematics |
record_format | dspace |
spelling | oxford-uuid:de6e9e39-a0db-46e4-a983-a76adb5059892023-07-19T08:10:27ZDecomposing random permutations into order-isomorphic subpermutationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:de6e9e39-a0db-46e4-a983-a76adb505989EnglishSymplectic ElementsSociety for Industrial and Applied Mathematics2023Groenland, CJohnston, TKorandi, DRoberts, AScott, ATan, J<p>Two permutations σ and π are ℓ-similar if they can be decomposed into subpermutations σ<sup>(1)</sup>, . . . , σ<sup>(ℓ)</sup> and π<sup>(1)</sup>, . . . , π<sup>(ℓ)</sup> such that σ<sup>(i)</sup> is orderisomorphic to π<sup>(i)</sup> for all i ∈ [ℓ]. Recently, Dudek, Grytczuk and Ruciński posed the problem of determining the minimum ℓ for which two permutations chosen independently and uniformly at random are ℓ-similar. We show that two such permutations are <em>O</em>(<em>n</em><sup>1/3</sup> log<sup>11/6</sup> (<em>n</em>))-similar with high probability, which is tight up to a polylogarithmic factor. Our result also generalises to simultaneous decompositions of multiple permutations.</p> |
spellingShingle | Groenland, C Johnston, T Korandi, D Roberts, A Scott, A Tan, J Decomposing random permutations into order-isomorphic subpermutations |
title | Decomposing random permutations into order-isomorphic subpermutations |
title_full | Decomposing random permutations into order-isomorphic subpermutations |
title_fullStr | Decomposing random permutations into order-isomorphic subpermutations |
title_full_unstemmed | Decomposing random permutations into order-isomorphic subpermutations |
title_short | Decomposing random permutations into order-isomorphic subpermutations |
title_sort | decomposing random permutations into order isomorphic subpermutations |
work_keys_str_mv | AT groenlandc decomposingrandompermutationsintoorderisomorphicsubpermutations AT johnstont decomposingrandompermutationsintoorderisomorphicsubpermutations AT korandid decomposingrandompermutationsintoorderisomorphicsubpermutations AT robertsa decomposingrandompermutationsintoorderisomorphicsubpermutations AT scotta decomposingrandompermutationsintoorderisomorphicsubpermutations AT tanj decomposingrandompermutationsintoorderisomorphicsubpermutations |