Decomposing random permutations into order-isomorphic subpermutations

<p>Two permutations &sigma; and &pi; are ℓ-similar if they can be decomposed into subpermutations &sigma;<sup>(1)</sup>, . . . , &sigma;<sup>(ℓ)</sup> and &pi;<sup>(1)</sup>, . . . , &pi;<sup>(ℓ)</sup> such that &sigma...

Full description

Bibliographic Details
Main Authors: Groenland, C, Johnston, T, Korandi, D, Roberts, A, Scott, A, Tan, J
Format: Journal article
Language:English
Published: Society for Industrial and Applied Mathematics 2023
_version_ 1797110234271973376
author Groenland, C
Johnston, T
Korandi, D
Roberts, A
Scott, A
Tan, J
author_facet Groenland, C
Johnston, T
Korandi, D
Roberts, A
Scott, A
Tan, J
author_sort Groenland, C
collection OXFORD
description <p>Two permutations &sigma; and &pi; are ℓ-similar if they can be decomposed into subpermutations &sigma;<sup>(1)</sup>, . . . , &sigma;<sup>(ℓ)</sup> and &pi;<sup>(1)</sup>, . . . , &pi;<sup>(ℓ)</sup> such that &sigma;<sup>(i)</sup> is orderisomorphic to &pi;<sup>(i)</sup> for all i &isin; [ℓ]. Recently, Dudek, Grytczuk and Ruciński posed the problem of determining the minimum&nbsp;ℓ for which two permutations chosen independently and uniformly at random are ℓ-similar. We show that two such permutations are <em>O</em>(<em>n</em><sup>1/3</sup> log<sup>11/6</sup> (<em>n</em>))-similar with high probability, which is tight up to a polylogarithmic factor. Our result also generalises to simultaneous decompositions of multiple permutations.</p>
first_indexed 2024-03-07T07:52:13Z
format Journal article
id oxford-uuid:de6e9e39-a0db-46e4-a983-a76adb505989
institution University of Oxford
language English
last_indexed 2024-03-07T07:52:13Z
publishDate 2023
publisher Society for Industrial and Applied Mathematics
record_format dspace
spelling oxford-uuid:de6e9e39-a0db-46e4-a983-a76adb5059892023-07-19T08:10:27ZDecomposing random permutations into order-isomorphic subpermutationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:de6e9e39-a0db-46e4-a983-a76adb505989EnglishSymplectic ElementsSociety for Industrial and Applied Mathematics2023Groenland, CJohnston, TKorandi, DRoberts, AScott, ATan, J<p>Two permutations &sigma; and &pi; are ℓ-similar if they can be decomposed into subpermutations &sigma;<sup>(1)</sup>, . . . , &sigma;<sup>(ℓ)</sup> and &pi;<sup>(1)</sup>, . . . , &pi;<sup>(ℓ)</sup> such that &sigma;<sup>(i)</sup> is orderisomorphic to &pi;<sup>(i)</sup> for all i &isin; [ℓ]. Recently, Dudek, Grytczuk and Ruciński posed the problem of determining the minimum&nbsp;ℓ for which two permutations chosen independently and uniformly at random are ℓ-similar. We show that two such permutations are <em>O</em>(<em>n</em><sup>1/3</sup> log<sup>11/6</sup> (<em>n</em>))-similar with high probability, which is tight up to a polylogarithmic factor. Our result also generalises to simultaneous decompositions of multiple permutations.</p>
spellingShingle Groenland, C
Johnston, T
Korandi, D
Roberts, A
Scott, A
Tan, J
Decomposing random permutations into order-isomorphic subpermutations
title Decomposing random permutations into order-isomorphic subpermutations
title_full Decomposing random permutations into order-isomorphic subpermutations
title_fullStr Decomposing random permutations into order-isomorphic subpermutations
title_full_unstemmed Decomposing random permutations into order-isomorphic subpermutations
title_short Decomposing random permutations into order-isomorphic subpermutations
title_sort decomposing random permutations into order isomorphic subpermutations
work_keys_str_mv AT groenlandc decomposingrandompermutationsintoorderisomorphicsubpermutations
AT johnstont decomposingrandompermutationsintoorderisomorphicsubpermutations
AT korandid decomposingrandompermutationsintoorderisomorphicsubpermutations
AT robertsa decomposingrandompermutationsintoorderisomorphicsubpermutations
AT scotta decomposingrandompermutationsintoorderisomorphicsubpermutations
AT tanj decomposingrandompermutationsintoorderisomorphicsubpermutations