Intermediate and small scale limiting theorems for random fields
In this paper we study the nodal lines of random eigenfunctions of the Laplacian on the torus, the so-called ‘arithmetic waves’. To be more precise, we study the number of intersections of the nodal line with a straight interval in a given direction. We are interested in how this number depends on t...
Main Authors: | Beliaev, D, Maffucci, RW |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
International Press
2022
|
Títulos similares
-
Coupling of stationary fields with application to arithmetic waves
por: Beliaev, D, et al.
Publicado: (2022) -
On limit theorems for random fields
por: Rimas Banys
Publicado: (2009-12-01) -
On the Asymptotic Behavior in Random Fields: The Central Limit Theorem
por: Mohammad Mehdi Saber, et al.
Publicado: (2019-09-01) -
On the intermediate value theorem over a non-Archimedean field
por: Luigi Corgnier, et al.
Publicado: (2013-11-01) -
Random waves on T3: nodal area variance and lattice point correlations
por: Benatar, J, et al.
Publicado: (2017)