A machine learning artefact detection method for single-channel infant event-related potential studies
Objective. Automated detection of artefact in stimulus-evoked electroencephalographic (EEG) data recorded in neonates will improve the reproducibility and speed of analysis in clinical research compared with manual identification of artefact. Some studies use very short, single-channel epochs of EEG...
Κύριοι συγγραφείς: | Marchant, S, van der Vaart, M, Pillay, K, Baxter, L, Bhatt, A, Fitzgibbon, S, Hartley, C, Slater, R |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
IOP Publishing
2024
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Sensory event-related potential morphology predicts age in premature infants
ανά: Zandvoort, CS, κ.ά.
Έκδοση: (2023) -
Premature infants display discriminable behavioral, physiological, and brain responses to noxious and nonnoxious stimuli
ανά: van der Vaart, M, κ.ά.
Έκδοση: (2021) -
Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study
ανά: Duff, E, κ.ά.
Έκδοση: (2020) -
The PiNe box: development and validation of an electronic device to time-lock multimodal responses to sensory stimuli in hospitalised infants
ανά: Worley, A, κ.ά.
Έκδοση: (2023) -
Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study
ανά: Duff, EP, κ.ά.
Έκδοση: (2020)