A machine learning artefact detection method for single-channel infant event-related potential studies
Objective. Automated detection of artefact in stimulus-evoked electroencephalographic (EEG) data recorded in neonates will improve the reproducibility and speed of analysis in clinical research compared with manual identification of artefact. Some studies use very short, single-channel epochs of EEG...
Հիմնական հեղինակներ: | Marchant, S, van der Vaart, M, Pillay, K, Baxter, L, Bhatt, A, Fitzgibbon, S, Hartley, C, Slater, R |
---|---|
Ձևաչափ: | Journal article |
Լեզու: | English |
Հրապարակվել է: |
IOP Publishing
2024
|
Նմանատիպ նյութեր
-
Sensory event-related potential morphology predicts age in premature infants
: Zandvoort, CS, և այլն
Հրապարակվել է: (2023) -
Premature infants display discriminable behavioral, physiological, and brain responses to noxious and nonnoxious stimuli
: van der Vaart, M, և այլն
Հրապարակվել է: (2021) -
Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study
: Duff, E, և այլն
Հրապարակվել է: (2020) -
The PiNe box: development and validation of an electronic device to time-lock multimodal responses to sensory stimuli in hospitalised infants
: Worley, A, և այլն
Հրապարակվել է: (2023) -
Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study
: Duff, EP, և այլն
Հրապարակվել է: (2020)