Semi-supervised learning of probabilistic models for ECG segmentation.
We present a novel semi-supervised learning algorithm, based upon the EM algorithm for maximum likelihood estimation, which can be used to learn probabilistic models from subjectively labelled data. We demonstrate the method on the task of automated ECG segmentation, with a particular emphasis on th...
المؤلفون الرئيسيون: | Hughes, N, Roberts, S, Tarassenko, L |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
2004
|
مواد مشابهة
-
Exploring probabilistic models for semi-supervised learning
حسب: Wang, J
منشور في: (2023) -
Markov models for automated ECG interval analysis
حسب: Hughes, N, وآخرون
منشور في: (2004) -
Probabilistic models for multi-view semi-supervised learning and coding
حسب: Christoudias, C. Mario (Christos Mario)
منشور في: (2010) -
Semi-supervised active transfer learning for fetal ECG arrhythmia detection
حسب: Mohammad Reza Mohebbian, وآخرون
منشور في: (2023-01-01) -
Supervised ECG wave segmentation using convolutional LSTM
حسب: Aman Malali, وآخرون
منشور في: (2020-09-01)