Semi-supervised learning of probabilistic models for ECG segmentation.
We present a novel semi-supervised learning algorithm, based upon the EM algorithm for maximum likelihood estimation, which can be used to learn probabilistic models from subjectively labelled data. We demonstrate the method on the task of automated ECG segmentation, with a particular emphasis on th...
Autores principales: | Hughes, N, Roberts, S, Tarassenko, L |
---|---|
Formato: | Journal article |
Lenguaje: | English |
Publicado: |
2004
|
Ejemplares similares
-
Exploring probabilistic models for semi-supervised learning
por: Wang, J
Publicado: (2023) -
Markov models for automated ECG interval analysis
por: Hughes, N, et al.
Publicado: (2004) -
Probabilistic models for multi-view semi-supervised learning and coding
por: Christoudias, C. Mario (Christos Mario)
Publicado: (2010) -
Semi-supervised active transfer learning for fetal ECG arrhythmia detection
por: Mohammad Reza Mohebbian, et al.
Publicado: (2023-01-01) -
Supervised ECG wave segmentation using convolutional LSTM
por: Aman Malali, et al.
Publicado: (2020-09-01)