Semi-supervised learning of probabilistic models for ECG segmentation.
We present a novel semi-supervised learning algorithm, based upon the EM algorithm for maximum likelihood estimation, which can be used to learn probabilistic models from subjectively labelled data. We demonstrate the method on the task of automated ECG segmentation, with a particular emphasis on th...
Auteurs principaux: | Hughes, N, Roberts, S, Tarassenko, L |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2004
|
Documents similaires
-
Exploring probabilistic models for semi-supervised learning
par: Wang, J
Publié: (2023) -
Markov models for automated ECG interval analysis
par: Hughes, N, et autres
Publié: (2004) -
Probabilistic models for multi-view semi-supervised learning and coding
par: Christoudias, C. Mario (Christos Mario)
Publié: (2010) -
Semi-supervised active transfer learning for fetal ECG arrhythmia detection
par: Mohammad Reza Mohebbian, et autres
Publié: (2023-01-01) -
Supervised ECG wave segmentation using convolutional LSTM
par: Aman Malali, et autres
Publié: (2020-09-01)