Subnanometer-wide indium selenide nanoribbons

Indium selenides (In<sub><i>x</i></sub>Se<sub><i>y</i></sub>) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when conf...

Full description

Bibliographic Details
Main Authors: Cull, WJ, Skowron, ST, Hayter, R, Stoppiello, CT, Rance, GA, Biskupek, J, Kudrynskyi, ZR, Kovalyuk, ZD, Allen, CS, Slater, TJA, Kaiser, U, Patanè, A, Khlobystov, AN
Format: Journal article
Language:English
Published: American Chemical Society 2023
Subjects:
_version_ 1797110572473384960
author Cull, WJ
Skowron, ST
Hayter, R
Stoppiello, CT
Rance, GA
Biskupek, J
Kudrynskyi, ZR
Kovalyuk, ZD
Allen, CS
Slater, TJA
Kaiser, U
Patanè, A
Khlobystov, AN
author_facet Cull, WJ
Skowron, ST
Hayter, R
Stoppiello, CT
Rance, GA
Biskupek, J
Kudrynskyi, ZR
Kovalyuk, ZD
Allen, CS
Slater, TJA
Kaiser, U
Patanè, A
Khlobystov, AN
author_sort Cull, WJ
collection OXFORD
description Indium selenides (In<sub><i>x</i></sub>Se<sub><i>y</i></sub>) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide In<sub><i>x</i></sub>Se<sub><i>y</i></sub> by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of In<sub><i>x</i></sub>Se<sub><i>y</i></sub> we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of In<sub><i>x</i></sub>Se<sub><i>y</i></sub>. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm In<sub><i>x</i></sub>Se<sub><i>y</i></sub>, namely InSe or β-In<sub>2</sub>Se<sub>3</sub>, can be prepared. Additionally, <i>in situ</i> AC-TEM heating experiments reveal that encapsulated β-In<sub>2</sub>Se<sub>3</sub> undergoes a phase change to γ-In<sub>2</sub>Se<sub>3</sub> above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.
first_indexed 2024-03-07T07:56:41Z
format Journal article
id oxford-uuid:df60310c-c7ff-4529-acee-22904650bca5
institution University of Oxford
language English
last_indexed 2024-03-07T07:56:41Z
publishDate 2023
publisher American Chemical Society
record_format dspace
spelling oxford-uuid:df60310c-c7ff-4529-acee-22904650bca52023-08-17T10:09:15ZSubnanometer-wide indium selenide nanoribbonsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:df60310c-c7ff-4529-acee-22904650bca5Carbon nanotubesTwo dimensional materialsPhase transitionsEncapsulationTransmission electron microscopyEnglishSymplectic ElementsAmerican Chemical Society2023Cull, WJSkowron, STHayter, RStoppiello, CTRance, GABiskupek, JKudrynskyi, ZRKovalyuk, ZDAllen, CSSlater, TJAKaiser, UPatanè, AKhlobystov, ANIndium selenides (In<sub><i>x</i></sub>Se<sub><i>y</i></sub>) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide In<sub><i>x</i></sub>Se<sub><i>y</i></sub> by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of In<sub><i>x</i></sub>Se<sub><i>y</i></sub> we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of In<sub><i>x</i></sub>Se<sub><i>y</i></sub>. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm In<sub><i>x</i></sub>Se<sub><i>y</i></sub>, namely InSe or β-In<sub>2</sub>Se<sub>3</sub>, can be prepared. Additionally, <i>in situ</i> AC-TEM heating experiments reveal that encapsulated β-In<sub>2</sub>Se<sub>3</sub> undergoes a phase change to γ-In<sub>2</sub>Se<sub>3</sub> above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.
spellingShingle Carbon nanotubes
Two dimensional materials
Phase transitions
Encapsulation
Transmission electron microscopy
Cull, WJ
Skowron, ST
Hayter, R
Stoppiello, CT
Rance, GA
Biskupek, J
Kudrynskyi, ZR
Kovalyuk, ZD
Allen, CS
Slater, TJA
Kaiser, U
Patanè, A
Khlobystov, AN
Subnanometer-wide indium selenide nanoribbons
title Subnanometer-wide indium selenide nanoribbons
title_full Subnanometer-wide indium selenide nanoribbons
title_fullStr Subnanometer-wide indium selenide nanoribbons
title_full_unstemmed Subnanometer-wide indium selenide nanoribbons
title_short Subnanometer-wide indium selenide nanoribbons
title_sort subnanometer wide indium selenide nanoribbons
topic Carbon nanotubes
Two dimensional materials
Phase transitions
Encapsulation
Transmission electron microscopy
work_keys_str_mv AT cullwj subnanometerwideindiumselenidenanoribbons
AT skowronst subnanometerwideindiumselenidenanoribbons
AT hayterr subnanometerwideindiumselenidenanoribbons
AT stoppielloct subnanometerwideindiumselenidenanoribbons
AT rancega subnanometerwideindiumselenidenanoribbons
AT biskupekj subnanometerwideindiumselenidenanoribbons
AT kudrynskyizr subnanometerwideindiumselenidenanoribbons
AT kovalyukzd subnanometerwideindiumselenidenanoribbons
AT allencs subnanometerwideindiumselenidenanoribbons
AT slatertja subnanometerwideindiumselenidenanoribbons
AT kaiseru subnanometerwideindiumselenidenanoribbons
AT patanea subnanometerwideindiumselenidenanoribbons
AT khlobystovan subnanometerwideindiumselenidenanoribbons