Subnanometer-wide indium selenide nanoribbons
Indium selenides (In<sub><i>x</i></sub>Se<sub><i>y</i></sub>) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when conf...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
American Chemical Society
2023
|
Subjects: |
_version_ | 1797110572473384960 |
---|---|
author | Cull, WJ Skowron, ST Hayter, R Stoppiello, CT Rance, GA Biskupek, J Kudrynskyi, ZR Kovalyuk, ZD Allen, CS Slater, TJA Kaiser, U Patanè, A Khlobystov, AN |
author_facet | Cull, WJ Skowron, ST Hayter, R Stoppiello, CT Rance, GA Biskupek, J Kudrynskyi, ZR Kovalyuk, ZD Allen, CS Slater, TJA Kaiser, U Patanè, A Khlobystov, AN |
author_sort | Cull, WJ |
collection | OXFORD |
description | Indium selenides (In<sub><i>x</i></sub>Se<sub><i>y</i></sub>) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide In<sub><i>x</i></sub>Se<sub><i>y</i></sub> by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of In<sub><i>x</i></sub>Se<sub><i>y</i></sub> we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of In<sub><i>x</i></sub>Se<sub><i>y</i></sub>. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm In<sub><i>x</i></sub>Se<sub><i>y</i></sub>, namely InSe or β-In<sub>2</sub>Se<sub>3</sub>, can be prepared. Additionally, <i>in situ</i> AC-TEM heating experiments reveal that encapsulated β-In<sub>2</sub>Se<sub>3</sub> undergoes a phase change to γ-In<sub>2</sub>Se<sub>3</sub> above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components. |
first_indexed | 2024-03-07T07:56:41Z |
format | Journal article |
id | oxford-uuid:df60310c-c7ff-4529-acee-22904650bca5 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T07:56:41Z |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | dspace |
spelling | oxford-uuid:df60310c-c7ff-4529-acee-22904650bca52023-08-17T10:09:15ZSubnanometer-wide indium selenide nanoribbonsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:df60310c-c7ff-4529-acee-22904650bca5Carbon nanotubesTwo dimensional materialsPhase transitionsEncapsulationTransmission electron microscopyEnglishSymplectic ElementsAmerican Chemical Society2023Cull, WJSkowron, STHayter, RStoppiello, CTRance, GABiskupek, JKudrynskyi, ZRKovalyuk, ZDAllen, CSSlater, TJAKaiser, UPatanè, AKhlobystov, ANIndium selenides (In<sub><i>x</i></sub>Se<sub><i>y</i></sub>) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide In<sub><i>x</i></sub>Se<sub><i>y</i></sub> by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of In<sub><i>x</i></sub>Se<sub><i>y</i></sub> we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of In<sub><i>x</i></sub>Se<sub><i>y</i></sub>. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm In<sub><i>x</i></sub>Se<sub><i>y</i></sub>, namely InSe or β-In<sub>2</sub>Se<sub>3</sub>, can be prepared. Additionally, <i>in situ</i> AC-TEM heating experiments reveal that encapsulated β-In<sub>2</sub>Se<sub>3</sub> undergoes a phase change to γ-In<sub>2</sub>Se<sub>3</sub> above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components. |
spellingShingle | Carbon nanotubes Two dimensional materials Phase transitions Encapsulation Transmission electron microscopy Cull, WJ Skowron, ST Hayter, R Stoppiello, CT Rance, GA Biskupek, J Kudrynskyi, ZR Kovalyuk, ZD Allen, CS Slater, TJA Kaiser, U Patanè, A Khlobystov, AN Subnanometer-wide indium selenide nanoribbons |
title | Subnanometer-wide indium selenide nanoribbons |
title_full | Subnanometer-wide indium selenide nanoribbons |
title_fullStr | Subnanometer-wide indium selenide nanoribbons |
title_full_unstemmed | Subnanometer-wide indium selenide nanoribbons |
title_short | Subnanometer-wide indium selenide nanoribbons |
title_sort | subnanometer wide indium selenide nanoribbons |
topic | Carbon nanotubes Two dimensional materials Phase transitions Encapsulation Transmission electron microscopy |
work_keys_str_mv | AT cullwj subnanometerwideindiumselenidenanoribbons AT skowronst subnanometerwideindiumselenidenanoribbons AT hayterr subnanometerwideindiumselenidenanoribbons AT stoppielloct subnanometerwideindiumselenidenanoribbons AT rancega subnanometerwideindiumselenidenanoribbons AT biskupekj subnanometerwideindiumselenidenanoribbons AT kudrynskyizr subnanometerwideindiumselenidenanoribbons AT kovalyukzd subnanometerwideindiumselenidenanoribbons AT allencs subnanometerwideindiumselenidenanoribbons AT slatertja subnanometerwideindiumselenidenanoribbons AT kaiseru subnanometerwideindiumselenidenanoribbons AT patanea subnanometerwideindiumselenidenanoribbons AT khlobystovan subnanometerwideindiumselenidenanoribbons |