Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
Autors principals: | Nakatsukasa, Y, Noferini, V |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
Elsevier
2019
|
Ítems similars
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
per: Fu Sun, et al.
Publicat: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
per: Mabel Cuesta
Publicat: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
per: Marta Calanchi, et al.
Publicat: (2021-12-01) -
Rectangular eigenvalue problems
per: Hashemi, B, et al.
Publicat: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
per: S. F. M. Ibrahim
Publicat: (1998-01-01)