Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
Main Authors: | Nakatsukasa, Y, Noferini, V |
---|---|
Format: | Journal article |
Sprog: | English |
Udgivet: |
Elsevier
2019
|
Lignende værker
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
af: Fu Sun, et al.
Udgivet: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
af: Mabel Cuesta
Udgivet: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
af: Marta Calanchi, et al.
Udgivet: (2021-12-01) -
Rectangular eigenvalue problems
af: Hashemi, B, et al.
Udgivet: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
af: S. F. M. Ibrahim
Udgivet: (1998-01-01)