Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
Auteurs principaux: | Nakatsukasa, Y, Noferini, V |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2019
|
Documents similaires
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
par: Fu Sun, et autres
Publié: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
par: Mabel Cuesta
Publié: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
par: Marta Calanchi, et autres
Publié: (2021-12-01) -
Rectangular eigenvalue problems
par: Hashemi, B, et autres
Publié: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
par: S. F. M. Ibrahim
Publié: (1998-01-01)