Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems

Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...

詳細記述

書誌詳細
主要な著者: Nakatsukasa, Y, Noferini, V
フォーマット: Journal article
言語:English
出版事項: Elsevier 2019

類似資料