Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
主要な著者: | Nakatsukasa, Y, Noferini, V |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Elsevier
2019
|
類似資料
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
著者:: Fu Sun, 等
出版事項: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
著者:: Mabel Cuesta
出版事項: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
著者:: Marta Calanchi, 等
出版事項: (2021-12-01) -
Rectangular eigenvalue problems
著者:: Hashemi, B, 等
出版事項: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
著者:: S. F. M. Ibrahim
出版事項: (1998-01-01)